
ZeroSync: Introducing Validity Proofs to Bitcoin

Robin Linus and Lukas George

ZeroSync Association

Abstract

We introduce ZeroSync, the first-ever proof system addressing Bitcoin’s scalabil-

ity challenges with Succinct Non-Interactive Argument of Knowledge (SNARKs).

ZeroSync compresses the entire Bitcoin blockchain into a compact proof of valid-

ity, enabling instant verification and unlocking various innovative applications. We

discuss our prototype implementation of a chain state proof, utilizing the Cairo

language, Utreexo, and recursive STARKs. Our work enables diverse applications,

including quick bootstrapping of full nodes, trustless light clients, enhanced Light-

ning Network privacy, and secure cross-chain bridges. Chain state proofs require no

consensus changes, which is crucial as forks in Bitcoin are challenging to implement

and achieve consensus for. Despite the existing bottleneck of prover performance,

we present a range of optimization strategies and demonstrate the practicality of

generating a complete chain state proof.

Finally, we introduce zkCoins, a client-side validation protocol combined with zero-

knowledge SNARKs, drastically improving privacy and throughput of token trans-

actions. In combination with future Bitcoin features, such as Simplicity, zkCoins

also enables private and more scalable BTC transactions.

The groundbreaking compression capabilities of SNARKs initiated a paradigm shift

in cryptocurrency design, and ZeroSync is pioneering their application to Bitcoin.

1 The First Chain State Proof of Bitcoin

The security of Bitcoin [1] relies on every node verifying every transaction. Only a fully

verifying node can participate in a trustless and censorship-resistant manner. Moreover,

only a fully verifying node really contributes to the network’s decentralization because

the consensus rules are defined by what users agree to with their node. Still, there are

only about 50,000 full nodes [2] while millions of Bitcoin users exist. This asymmetry is

rooted in the high barrier to entry of having to download and verify about 500 GB of

historical blockchain data [3] to sync a node.

1



Succinct Non-Interactive Argument of Knowledge (SNARKs) promise a paradigm shift

in blockchain scalability and privacy. While considerable engineering effort is underway

in the Ethereum community to apply this technology, no similar investment has yet been

made for the Bitcoin network. Projects like the Mina protocol [4] demonstrate that recur-

sive proofs can compress an entire blockchain into a constant-size proof. At ZeroSync, we

have built the first proof of Bitcoin’s chain state. We are validating the entire blockchain

in a proof system. This is computationally expensive; however, the resulting proof can

be verified cheaply on any device. The grand vision is millions of phones running a fully

verifying node.

Bitcoin is highly decentralized, and consensus changes are intentionally hard. They re-

quire convincing a majority, which is generally a losing battle. Applying validity proofs

outside of Bitcoin’s consensus rules has a lot more potential since it does not require ev-

eryone to agree. It is up to every individual user if they want to sync using a chain state

proof or a conventional inital block download. This approach enables great flexibility on

top of Bitcoin’s rigid base layer consensus.

We use a transparent proof system that requires no trusted setup and introduces no novel

cryptographic assumptions. There is also a low risk of prover centralization because any

other party can extend an existing chain proof by proving the next block. Ideas for de-

centralized proof generation will be explored in a later chapter.

The prototype we have implemented already verifies most of Bitcoin’s consensus rules. It

verifies everything except for the transaction witness data. Our benchmarks demonstrate

the technical feasibility of a chain state proof. The main obstacle is the prover perfor-

mance, particularly proving SHA256 hashes and ECDSA signatures. In the last chapter,

we discuss various approaches to improve the prover performance significantly.

2 The ZeroSync Proof System

We are using STARK proofs[5] mostly because they are transparent and scalable to the

size of bitcoin blocks. They also have the best known practical prover performance of

all SNARKs. StarkWare, the company that invented STARKs, offers a domain-specific

language named Cairo1, which is “a language for creating STARK-provable programs for

general computation”. We have implemented most of the Bitcoin consensus rules in the

Cairo language. Our Bitcoin Cairo library is free and open-source software (FOSS).

Representing Bitcoin’s entire UTXO set in a chain state proof is intractable. Therefore

we are using a UTXO set commitment instead. We have implemented Utreexo [6], which

is a dynamic accumulator for bitcoin state, that allows us to verify inclusion and update

the commitment without having to know the complete UTXO set. We used a STARK-

1https://www.cairo-lang.org/

2

https://www.cairo-lang.org/


friendly hash function in our Utreexo implementation.

We chose the Giza2 prover, which is based on the Winterfell3 STARK library, as it

was the most mature FOSS STARK prover available back then. Furthermore, we have

contributed an implementation for recursive STARKs. In collaboration with Max Gillet,

the author of Giza, we have ported the Giza verifier to Cairo to verify a proof in a proof.

We modified the proof system to use a STARK-friendly hash function to accelerate proof

recursion.

We have published a web verifier for chain proofs4, which is the Giza verifier compiled

to web assembly. Instantly verifying Bitcoin’s chain state on a website demonstrates the

potential of this technology.

Furthermore, we have published an experimental version of the ZeroSync toolkit, which

allows others to import our Bitcoin Cairo library into their own projects to generate

custom Bitcoin STARKs5.

3 Types of Chain State Proofs

We aim to apply STARKs to relieve other applications from verifying the Bitcoin chain

block by block by replacing the process with a verifiable proof of the latest chain state. It

intends to keep security as close as possible to full node security; however, a proof cannot

verify data availability. A proof also cannot verify the longest chain rule as we cannot

provably connect it to a peer-to-peer network. A proof is aware of only a single chain,

and all the p2p logic must be implemented on the node level. The node has to resolve

conflicting claims of peers, but using proofs it can instantly verify the total work of two

different chain tips.

The public inputs for every chain proof contain the current program’s hash for recursive

verification, as well as the best (highest) block hash, total work, and current block height

of the verified chain. They include the current target, previous 11 timestamps, and

current epoch start time to verify Bitcoin’s retarget mechanism correctly. We aim for

three different types of state proofs:

1. The header chain proof that attests to the correct validation of all light client

consensus rules and refers to the chain of Bitcoin block headers,

2. the “assumevalid”6 state proof which includes the verification of all consensus rules

but transaction script validation and

3. the full state proof with transaction script validation.

2https://github.com/ZeroSync/giza
3https://github.com/facebook/winterfell
4A deployed version of the verifier is available at https://zerosync.org/headers-chain.html
5https://pypi.org/project/ZeroSync/
6https://bitcoincore.org/en/2017/03/08/release-0.14.0/#assumed-valid-blocks

3

https://github.com/ZeroSync/giza
https://github.com/facebook/winterfell
https://zerosync.org/headers-chain.html
https://pypi.org/project/ZeroSync/
https://bitcoincore.org/en/2017/03/08/release-0.14.0/#assumed-valid-blocks


Each type verifies a larger subset of Bitcoin’s consensus rules, aiming to encapsulate all of

them in a single program eventually and, therefore, some other respective public inputs.

However, these are always a constant number of field elements which keeps the actual

proofs a constant size; even after recursive verification. The size of the resulting chain

state proof is about 800kB uncompressed.

The block data is fed into the program using hints7, which are pre-initialized memory

cells so it does not blow up the size of the public inputs.

The same overall procedure is used to create a state proof: First, the previous state proof

is verified, and then the respective consensus rules are applied to the next set of blocks

resulting in an updated chain state.

3.1 Header Chain Proof

In the case of verifying only block headers and their consensus rules, we can include mul-

tiple headers in each iteration of the recursive proving process to decrease the amount of

expensive STARK proof verification. In opposite to existing approaches, e.g., zkRelay[7],

we support any number of blocks in a batch per proving run. Therefore, initial proving

can leverage powerful machines and large batches up until the proof is at the chain tip.

From then onward, smaller batches can be proven to decrease latency. In addition to

the standard public inputs already mentioned, the header proof includes a cryptographic

commitment to the set of all blocks proven in the current run and the recursively verified

proof. Currently, in the form of a Merkle tree, which allows verifying the inclusion of

a particular block header in a proof without requiring additional information about the

proving process (e.g., batch sizes used per recursive step) with a usual Merkle proof.

Cairo Program

Block 1 Block 2 Block 3 Block 4

Block Data and Merkle Path

Recursive
Verification

Block Validation

Merkle Root

Chain StatePublic
Inputs

Figure 1: Header chain state proof example for a batch with four blocks.

The Merkle root is created from all blocks in the batch and the previous proof’s Merkle

root. A zero node is added to the tree in case it would not be complete such that it

7https://www.cairo-lang.org/docs/how_cairo_works/hints.html

4

https://www.cairo-lang.org/docs/how_cairo_works/hints.html


can be appended using only the Merkle path for the respective zero node and without

recomputing the entire tree in the subsequent proving run.

3.2 Full Chain State Proof

Proving entire blocks and transactions is substantially more computationally expensive

than proving block headers. For easier development, we left the batching of blocks and

the Merkle tree out of our prototype. Another issue is the sheer size of the unspent

transaction outputs (UTXO set) that we must update with every block. The solution is

our Utreexo implementation that serves data and inclusion proof for each UTXO spent in

the to-be-currently validated block. Since Utreexo is a forest data structure, we include

a fixed number of roots in the public inputs. Updating these roots is part of the Cairo

program. In other words, their correctness is proven by the STARK.

Our assumevalid state proof is almost a complete chain state proof as it verifies all con-

sensus rules except for the transaction scripts, which it assumes to be valid. So far, we

have implemented the header chain proof and the assumevalid state proof as prototypes.

The former is feasible to prove, while the latter still requires performance improvements

to prove reasonable-sized blocks. It does not include the SegWit logic yet, a consensus

update that activated in August 2017, which means that our current implementation can

prove the chain only up to this point. The Taproot update has not been implemented

either.

4 Applications of Chain State Proofs

4.1 Accelerated Initial Sync

The canonical application of a chain state proof is to accelerate the initial block download

of Bitcoin Core. Naively, users can sync in three simple steps: Verify the current chain

state using a proof, then download the corresponding UTXO set (≈ 5 GB of data), copy

it into the “chainstate” folder, and run Bitcoin Core as usual. This procedure allows

users to bootstrap a (pruned) full node without having to download and verify 500 GB

of historical blockchain data. It reduces the initial sync time from many hours (or even

days) to minutes.

A chain state proof combined with Utreexo blocks allows to sync even faster. While the

chain state proof allows us to skip the initial block download, with Utreexo blocks, we do

not even have to download the UTXO set. After verifying the chain state proof, Utreexo

nodes can immediately listen for new blocks. The downside is that Utreexo requires to

“augment” blocks with Merkle inclusion proofs for all UTXOs spent in a block. That

5



leads to an overhead of about 2 megabytes per block. However, no bridge node is required.

Utreexo nodes can compute inclusion proofs for their own UTXOs from incoming blocks.

Approaches like these are great for bandwidth-constrained settings, which lead us to

partner with Blockstream to optimize the sync times via Blockstream Satellite.

Another intriguing application is trustless light clients. Many users, particularly those

on mobile devices, rely on trusted servers to serve them the correct transaction history.

Clients relying on “simplified payment verification” (SPV), as described in the Bitcoin

white paper, solve this issue only partially because servers could still withhold relevant

transactions. Servers do not require trust when they prove their responses with state

proofs. However, it requires a different UTXO set commitment, which provides a key-

value mapping, like a Merkle-Patricia tree, that can prove all UTXOs of an address. Our

current setup with Utreexo has yet to support that. We want to add to our chain proof

a more sophisticated accumulator to serve light clients efficiently.

4.2 Further Applications of Validity Proofs to Bitcoin

We have identified numerous further applications of succinct zero-knowledge proofs to

Bitcoin. For example, the privacy of the Lightning Network can be improved substan-

tially. Routing nodes have to publicly announce their UTXOs in the p2p gossip protocol,

which might even link them to their IP address. A chain state proof can be extended to

prove the validity of a payment channel without sacrificing privacy.

Another interesting application is attestations. Custodians, such as exchanges, can prove

their solvency to their customers.

A chain state proof turns a simple blockchain into an authenticated data structure, which

can efficiently answer complex queries with verifiable responses. A chain-processing proof

can generally act as an adaptor to create indices over the blockchain data, and apply ar-

bitrary filters or data transforms.

An open engineering challenge is how to design a chain state proof to be cheaply cus-

tomizable for many different use cases. For example, a decentralized domain name system,

which is based on the general observation that chain proofs can compute Merkle-like ac-

cumulators over any kind of blockchain inscriptions. We will present our ideas in a future

work.

5 Performance Limitations and Optimizations

In our performance benchmarks8, proving a full block, containing about 3,000 transac-

tions, took about 3.5 hours and required about 100GB of RAM. However, this was not

8An incomplete table of benchmarks is available at https://github.com/ZeroSync/ZeroSync/blob/
main/docs/roadmap.md#milestone-2-measure-and-optimise

6

https://github.com/ZeroSync/ZeroSync/blob/main/docs/roadmap.md#milestone-2-measure-and-optimise
https://github.com/ZeroSync/ZeroSync/blob/main/docs/roadmap.md#milestone-2-measure-and-optimise


a full block proof as it did not verify witness data. Such a signature verification costs

about 250,000 instructions, which, we estimate, will increase the total proving time to

five to seven hours in the unoptimized setup.

To keep an existing chain proof in sync, we must prove a block every 10 minutes. There-

fore, we want to increase proving performance by a factor of more than 40. In the

following, we discuss various approaches to achieve that.

5.1 Prover Performance Optimizations

Numerous optimizations are possible to increase the prover performance. Switching to

the currently developed Rust-based cairo-rs9 runner to generate the program trace (a

necessary step before proving the execution which takes about half of the proving pro-

cess’s time) will yield an improvement over the present Python implementation. Another

relatively simple optimization is to use a STARK-friendly hash function to accelerate the

verification of recursive STARKs significantly, as they consist mainly of Merkle paths. We

have already implemented a prototype using Pedersen hashes, which enabled us to verify

all Merkle paths of Utreexo and recursive STARKs in a reasonable time. Further opti-

mization is possible by switching to faster hash functions such as Rescue[8], Poseidon[9]

or Poseidon2[10].

Unmodified excerpt from STARK Friendly Hash – Survey and Recommendation [11] licensed under

CC-BY-4.0

Figure 2: An overview of hash functions and their cost when computing them in a
STARK. Proof-friendly hashing is crucial for Utreexo inclusion proofs and for recursive
proofs because STARK proof verification requires to check many Merkle paths.

An essential feature of Cairo is builtins10. They are “predefined optimized low-level

execution units which are added to the Cairo CPU board to perform predefined computa-

9https://github.com/lambdaclass/cairo-rs
10https://www.cairo-lang.org/docs/how_cairo_works/builtins.html

7

https://github.com/lambdaclass/cairo-rs
https://www.cairo-lang.org/docs/how_cairo_works/builtins.html


tions which are expensive to perform in vanilla Cairo (e.g., range-checks, Pedersen hash,

ECDSA,...)”. We plan to implement a builtin for sha256, as it currently comprises about

50-80% of the total proving time. Adding the ECDSA signature verification, to complete

the chain proof, requires further improvements. In joint work with Andrew Milson, the

author of the Sandstorm prover11, we are researching Starkware’s schemes [12] [13] on

accelerating arithmetic operations over other fields than Cairo’s base field. It is possible

to compute STARKs directly over the base field of secp256k1, so verification of curve

point operations becomes orders of magnitude cheaper. With this approach, signature

verification could be out-sourced to a second proof over the base field of secp256k1.

A different optimization is to reduce the field size by switching to the Goldilocks field,

which is around 4 to 10 times faster because it is smaller and optimized for 64-bit archi-

tectures. It also requires only about a quarter of the memory, because in practice, most

variables in our program are much smaller than the virtual machine’s register size, given

by Cairo’s standard ≈ 256 bit field. However, the highly optimized implementations of

Cairo’s builtins are tightly entangled with its standard field. That means it is required

to reimplement builtins for the Goldilocks field (e.g., rangecheck, bitwise, sha256).

It is possible to parallelize block proof generation. Independent provers can prove in-

dividual transactions, including the Utreexo state, before and after the transaction was

executed. Those transaction proofs get aggregated into a block proof. Provers can batch

multiple transactions into a single proof to minimize the overhead of proof recursions.

Proving small batches might be feasible on consumer hardware. Furthermore, batching

allows decentralizing proving, such that a network of zk-nodes would not have to rely on

a single prover with a specialized setup.

However, specialized hardware for proof generation, based on FPGAs or ASICs, might be

needed to initially prove the almost 800,000 existing Bitcoin blocks to catch up with the

current chain state. Generating this first chain state proof is very expensive, but when

the current chain is proven once, extending an existing state proof with the next block

every ten minutes will require much fewer resources.

6 zkCoins: Improving Scalability and Privacy

6.1 Blockchain Design Principles

In 2017, Andrew Poelstra formulated a powerful idea: “Use the chain for what the chain is

good for, which is an immutable ordering of commitments to prevent double-spending”[14].

He originally mentioned this in the context of Scriptless Scripts, which are off-chain smart

contracts. We generalized his idea, applied it to cryptocurrency scalability resarch, and

two key principles became apparent:

11https://github.com/andrewmilson/sandstorm

8

https://github.com/andrewmilson/sandstorm


1. Never write into the blockchain what can be communicated off-chain.

2. Avoid validation on the global layer that can be performed on the client side.

Following this paradigm, we created zkCoins, a novel payment system combining a client-

side validation protocol with zero-knowledge validity proofs to achieve high throughput

and strong privacy. In the next sections, we define zkCoins in more detail, particularly

an implementation as a second layer on Bitcoin.

6.2 Combining Client-Side Validation with zkSNARKs

Recently, client-side validation (CSV)[15] protocols, such as RGB[16] and Taro[17], have

become popular as they enable tokenized assets on Bitcoin, which require no consensus

changes, introduce a novel form of smart contracts, and have a low on-chain footprint. In

CSV protocols, only the recipient verifies a token’s history. The transaction data and the

token history is communicated off-chain, directly from sender to the recipient, which min-

imizes the load on the global layer. Only a compact commitment to the transaction data

is written into the chain, establishing a global ordering, which prevents double-spending.

Historically, the fundamental problem of CSV protocols has been that a token’s history

grows quasi-exponentially. Quickly, most transactions become related to each other, such

that over time, a token’s history converges against the size of the chain. However, the

recent advancements in the field of recursive validity proofs now allow compressing token

histories to negligible sizes. To transfer a coin in such a “zkCSV” protocol, the sender

extends the coin’s history proof to prove the transaction’s validity to its recipient. We

named our scheme zkCoins, because a coin is literally its proof of validity. The sender

gives a zkSNARK to the recipient.

In contrast to similar concepts like zk-rollups or Mina, there is no data availability prob-

lem, and no global proof aggregation (no “sequencer”) is required because the proofs are

communicated off-chain.

Additionally, zkCoins provide best-in-class privacy, as they obfuscate transaction amounts

and graphs using zero-knowledge SNARKs (zkSNARKs). This provides strong unlink-

ablility and censorship resistance, because eavesdropper cannot correlate commitments or

distinguish transactions in any way. Furthermore, zkCoins can greatly improve through-

put because all transaction data is communicated off-chain, and arbitrarily many inputs

and outputs can be contained in a small, constant-sized commitment in the chain.

Most interestingly, the global state can be reduced to a constant size. The sender proves

to the recipient that no double spending happened, by proving that their commitment

has never occurred in the chain before. In the following, we introduce a simple accumu-

lator scheme offering compact proofs of non-inclusion.

9



Figure 3: Alice sends zkCoins to Bob and Carol, and also aggregates into her account
the incoming coins that she received since her last update.

6.3 Timechain Accumulator

In every on-chain commitment, a sender commits to their next commitment key for their

next transaction. To ensure each key is used only once, they must prove non-inclusion

since the previous on-chain commitment, which committed to that key.

Once a month, all users sort all keys that occurred in the chain during that month. Then

they compute a Merkle tree over that sorted set of keys. The resulting Merkle paths are

non-inclusion proofs for all other keys because a path can prove that a particular key is

not at the position where it would be if it was included in the sorted set.

At the end of every month, each user keeps only a single proof of non-inclusion for their

latest state key and discards the rest of the tree. They aggregate that proof of non-

inclusion into their account state proof. Then they start over with the next month. The

required storage capacity is the maximum number of keys in the chain per month, which

is some large constant depending only on the block size, block time, and the size of

commitments, and not on the number of users.

10



Figure 4: We can reduce the timechain accumulator to a constant size. Users periodically
aggregate their monthly non-inclusion proofs into their account state proofs and discard
all other data.

6.4 Improving Bitcoin with zkCoins

Existing CSV protocols, such as RGB and Taro, modulate tokens onto Bitcoin UTXOs.

Our zkCSV protocol scales substantially better as it is fully decoupled from Bitcoin’s

UTXO set. Large batches of compact transaction commitments can be inscribed into a

Bitcoin block similar to inscriptions in the Ordinals protocol[18]. Every user can become

an aggregator and inscribe other users’ commitments into the blockchain. In most other

token protocols, users have to pay transaction fees denominated in the blockchain’s native

currency. Users cannot transfer any tokens, if they own no BTC. For zkCoin transactions,

users pay fees to aggregators denominated in tokens, and aggregators pay the BTC fees

to miners for them to include an inscription in a Bitcoin block. We estimate that the

Bitcoin network can process about 100 zkCoin transactions per second – while decreasing

the amount of verification required on the main layer, in comparison to a block full of

Bitcoin transactions.

6.5 Limitations of zkCoins

Major limitations of zkCoins are:

• Transactions are interactive, which implies that the recipient has to be online.

However, there’s only one-way interaction required, from sender to the recipient.

11



This is a fundamental improvement over RGB because the sender can finalize the

transaction on-chain without having to interact with the recipient first. The sender

could store redundant copies of the encrypted transaction data with multiple trust-

minimized middlemen, for the recipient to download when they come back online.

• The sender needs sufficient computational resources to prove their account updates.

Is that feasible on a phone? Also backups are crucial. Losing an account’s history

proof leads to loss of funds.

• Bridging BTC coins to zkCoins requires some kind of SNARK verifier on Bitcoin’s

main layer. However, an initial prototype could use a workaround, such as a feder-

ated peg, Tether, or an eternal one-way peg (minting a zkToken by burning BTC

coins).

• There is no global state, which implies fundamental data availability problems when

trying to use zkCSV for a smart contract platform.

7 Conclusion and Outlook

We have proposed the first concept to generate a succinct validity proof of Bitcoin’s chain

state. We implemented a sophisticated prototype and our benchmarks indicate that a

full chain state proof is computationally feasible indeed; however, open-source proof sys-

tems have yet to mature. Optimizing our tool stack to generate production-ready chain

state proofs will take more engineering effort. We outlined a set of possible optimizations

that will likely increase the prover’s performance, such that we can prove all the existing

blocks to catch up with the latest chain state and then extend a chain proof with the

next block within the 10-minute block time. In addition, we have outlined an approach

to decentralize proof generation.

Furthermore, we have introduced zkCoins, a client-side validation protocol combined with

validity proofs, which enables tokens on top of Bitcoin with superior scalability properties

and best-in-class privacy. We are working on publishing a concrete design and a proto-

type implementation.

With great excitement, we are following the development of the Simplicity[19] language,

which would allow us to implement a SNARK verifier on Bitcoin’s base layer. That

enables various novel features such as zk-rollups and trustless two-way pegs. The latter

allows us to peg BTC to a zkCoin, increasing the throughput of Bitcoin and improving its

privacy. Simplicity will soon be activated on the Liquid sidechain, becoming an excellent

testing field to experiment with on-chain proof systems and, eventually, the integration

of a SNARK verifier into the base layer of Bitcoin.

12



References

[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.

org/bitcoin.pdf, 2008. Accessed: 2023-05-07.

[2] Global Bitcoin Nodes - Bitnodes. https://bitnodes.io/nodes/all/#global-

bitcoin-nodes. Accessed: 2023-05-07.

[3] Statista. Size of the Bitcoin blockchain from January 2009 to July 11,

2022 . https://www.statista.com/statistics/647523/worldwide-bitcoin-

blockchain-size/, 2021. Accessed: 2023-05-07.

[4] Mina Protocol — The World’s First ZK Blockchain. https://minaprotocol.com/.

Accessed: 2023-05-07.

[5] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-

parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,

2018.

[6] Thaddeus Dryja. Utreexo: A dynamic hash-based accumulator optimized for the

Bitcoin UTXO set. Cryptology ePrint Archive, Paper 2019/611, 2019. https:

//eprint.iacr.org/2019/611.

[7] Martin Westerkamp and Jacob Eberhardt. zkRelay: Facilitating Sidechains using

zkSNARK-based Chain-Relays. Cryptology ePrint Archive, Paper 2020/433, 2020.

https://eprint.iacr.org/2020/433.

[8] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a standard

specification (sok). Cryptology ePrint Archive, 2020.

[9] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and

Markus Schofnegger. Poseidon: A New Hash Function for Zero-Knowledge Proof

Systems. In USENIX Security Symposium, volume 2021, 2021.

[10] Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2: A Faster

Version of the Poseidon Hash Function. Cryptology ePrint Archive, 2023.

[11] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK Friendly Hash – Survey

and Recommendation. Cryptology ePrint Archive, Paper 2020/948, 2020. https:

//eprint.iacr.org/2020/948.

[12] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic curve

fast fourier transform (ECFFT) Part I: fast polynomial algorithms over all finite

fields. arXiv preprint arXiv:2107.08473, 2021.

13

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://bitnodes.io/nodes/all/#global-bitcoin-nodes
https://bitnodes.io/nodes/all/#global-bitcoin-nodes
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://minaprotocol.com/
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2019/611
https://eprint.iacr.org/2020/433
https://eprint.iacr.org/2020/948
https://eprint.iacr.org/2020/948


[13] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Elliptic Curve

Fast Fourier Transform (ECFFT) Part II: Scalable and Transparent Proofs over All

Large Fields. 2022.

[14] Andrew Poelstra. Using the Chain for what Chains are Good For . https://www.

youtube.com/watch?v=3pd6xHjLbhs&t=5755s, 2017. Accessed: 2023-05-07.

[15] Peter Todd. Progress on Scaling via Client-Side Validation . https://www.youtube.

com/watch?v=uO-1rQbdZuk&t=6201s, 2016. Accessed: 2023-05-07.

[16] The RGB Project. What is RGB? . https://www.rgbfaq.com/faq/what-is-rgb,

2021. Accessed: 2023-05-07.

[17] Lightning Labs. Taro . https://docs.lightning.engineering/the-lightning-

network/taro, 2022. Accessed: 2023-05-07.

[18] Casey Rodarmor. Ordinals Inscriptions . https://docs.ordinals.com/

inscriptions.html, 2023. Accessed: 2023-05-07.

[19] Russell O’Connor. Simplicity: A new language for blockchains. In Proceedings of

the 2017 Workshop on Programming Languages and Analysis for Security, pages

107–120, 2017.

Acknowledgement

We would like to acknowledge the support and contributions of various individuals and

organizations in the development of the ZeroSync project. We are grateful to Geometry

for providing the initial research grant and guidance that facilitated the commencement

of this project. We also appreciate StarkWare’s financial support through an additional

grant, which was essential for the project’s progress.

We extend our gratitude to Ruben Somsen, Louis Guthmann, Max Gillett, Tino Stef-

fens, Andrew Milson, Giacomo Zucco, and Blockstream for their valuable mentoring and

support during the course of our research and prototype development. Their expertise

and guidance have been crucial in shaping the project’s direction and outcomes.

We thank everyone who has contributed to the ZeroSync project and look forward to

further collaborations and advancements in this field.

14

https://www.youtube.com/watch?v=3pd6xHjLbhs&t=5755s
https://www.youtube.com/watch?v=3pd6xHjLbhs&t=5755s
https://www.youtube.com/watch?v=uO-1rQbdZuk&t=6201s
https://www.youtube.com/watch?v=uO-1rQbdZuk&t=6201s
https://www.rgbfaq.com/faq/what-is-rgb
https://docs.lightning.engineering/the-lightning-network/taro
https://docs.lightning.engineering/the-lightning-network/taro
https://docs.ordinals.com/inscriptions.html
https://docs.ordinals.com/inscriptions.html

	The First Chain State Proof of Bitcoin
	The ZeroSync Proof System
	Types of Chain State Proofs
	Header Chain Proof
	Full Chain State Proof

	Applications of Chain State Proofs
	Accelerated Initial Sync
	Further Applications of Validity Proofs to Bitcoin

	Performance Limitations and Optimizations
	Prover Performance Optimizations

	zkCoins: Improving Scalability and Privacy
	Blockchain Design Principles
	Combining Client-Side Validation with zkSNARKs
	Timechain Accumulator
	Improving Bitcoin with zkCoins
	Limitations of zkCoins

	Conclusion and Outlook
	References

